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measurement accuracy performed. The high measurement accu-

racy obtained with these transitions allows coplanar probes to be

used to test rnicrostrip circuits without via holes at the wafer

level. The need for mounting circuits in fixtures for testing is

eliminated, resulting in lower testing costs.

The transition may prove especially useful at millimeter wave-

lengths, where its size can be reduced. Work to characterize this

transition at millimeter wavelengths is in progress. Work to

determine the S’ parameters of the transition as a function of

substrate thickness is also in progress.
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Puke Dispersion Distortion in Open and Shielded

Mlcrostrips Using the Spectral-Domain Method
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Abstrucf —The spectral.domain methud is usedl to compute tbe effective

dielectric constant [c,,, (~)] of open and shielded microstrip fines to

anafyze the dispersion ktortion of short electrical pulses. Precise expres-

sions for the Iongitttdirtaf and transverse curreut distributions allow a high

level of accuracy for &(~), It is determined that computation time can be

minintkd for the open microstrip cafcufatiorm by using the shielded

microstrip formulation provided large dimensions for the conducting walls

are taken.

I. INTRODUCTION

The analysis of the transient signal response in microstnp

transmission lines is important in microwave integrated circuits

(MIC’S) when large-bandwidth signals or high switching speeds

are considered. Electrical pulses generated from optoelectronic

switching typically have wide spectra that extend into the disper-

sive frequency region of microstrip lines. In the past, transient

signal behavior in microstrip lines was analyzed with quasi-static

form&s for the effective dielectric constant, c,,,, (~), of the
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Fig. 1. Configuration aud psmrneters of (a) open microstrip snd (b) shielded
microstrip lines.

fundamental mode [1]–[5]. However, detailed pulse dispersion

has not yet been examined with c,,,, (j) obtained from rigorous

full-wave analyses such ag the spectral-domain method [6], [7].

Neither have comparisons been made of distorted pulses using

full-wave methods and quasi-static techniques.

This paper considers the dispersion of short electrical pulses

propagating along open and shielded tnicrostrip lines (Fig. 1)

with c,.,, (~) calculated from the spectral-domain method. The

accuracy of this method can be increased systematically by

including more basis functions for the longitudinal and trans-

verse currents (.lZ (x) and JX( x ), respectively). However, as

pointed out by Kobayashi, only one basis function for each

current component is sufficient if these distributions are very

good approximations of the exact currents on the strip conductor

[8], [9]. Therefore the expressions for JZ(x) and JX(x) considered

in this paper are accurate formulas which allow the currents to be

represented by only one basis function. This corresponds to the

“first-order” solution of [6] and [7], while neglecting the trans-

verse current corresponds to the “zero-order” solution. For com-

parison purposes, the zero- and first-order solutions are used to

compute the dispersion curve of open and shielded microstrip

lines. Also, the current expressions considered here will be used

for both the open and the shielded lines so that their dispersive

characteristics may be compared. It is shown that computation

time may be minimized by using the shielded line formulation for

the open line calculations. Finally, pulses calculated with e,,,, (~)
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from the spectral-domain method, from quasi-static approxima-

tions [10], and from curve-fitting methods [11] are compared.

IL FORMULATION

The main steps of the spectral-domain formulation for both

types of microstrips will be reviewed briefly here. The differences

in the two formulations will contrast their corresponding compu-

tational efficiency in calculating C,e,,(~).

For the open microstrip case shown in Fig. l(a), the scalar

potentials and the field components derived from them are

Fourier transformed with respect to x as

with i =1,2 denoting the regions above and below the air-sub-

strate interface, respectively, and the tilde (” ) representing the

transformed field quantity. The hybrid-mode fields (TE’ and

TM’ ) are then modified according to the boundary conditions of

the open structure so that the transformed scalar potentials are

functions of the longitudinal and transverse currents on the strip

conductor.

The solution for ~ [and c,,,,(’)] involves the utilization of

Galerkin’s method (essentially a special case of the moment

method where the weighting functions are identical to the basis

functions) applied in the spectral domain, The basis functions in

this case are used to represent the current distributions according

to [6]

*=]

where M and N are the number of functions taken to expand

L(a) and ~(a), respectively. Applying Galerkin’s method with

the weighting functions ~,(a) and ~,(a) for different values of

i, the result is [6]

; K::’)cm + ; K:;’)dm = O, i=l,2,. ... N (3a)
~=1 ~=1

M N

*=1 ~=1

and G,, (a, ~) (the elements of the dyadic Green’s function in the

spectral domain) are given in [6].

The formulation of the shielded microstrip line [7] of Fig. l(b)

is essentially identical to the open microstrip case except that a

finite Fourier transform must be used. That is, instead of (l), we

have

Jz(n, y)=J + “2+,(x, y) e+’~”’ dx (5)
– a/2

where ~~ = (n —1/2)2 n/a is taken for the fundamental mode.

Using this definition and the same procedure as above with

different boundary conditions that reflect the rectangular wave-

guide geometry, a set of equations identical to (3a) and (3b) are

obtained with matrix elements redefined as [7]

where G,J ( n, ~ ) are given in [7]. The discrete summations in

(6a)-(6&~ converge to a solution for ~ more rapidly than the

integral formulas of (4a)– (4d), as discussed in the next section.

The expression for ~(x) is critical for the accuracy of Cre,,(~).

The transverse current component, in contrast, merely acts as an

adjuster for the magnitude of C,e,,( ~) as determined by ~ (x) [8],

[12]. For this investigation, the normalized distribution used for

JX(x) is given by Denlinger [13] (correction given in [9]) as

{“H
Tx 0.8W

‘In 0.8w ‘
o<lx[<—

Jx(x) =
2

[1

TX 0.8w w
(7)

* Cos — —<\xl<i
0.2W ‘ 2

where (f) ensures continuity at the (+0.8 w/2) points. The

Fourier transform (from the definition of (l)) of (7) is given by

[

awcos(O.4aw)
~(a) =j2w

H; ‘-(aW)’

5T sin(O.5aw) – awcos(O.4aw)
+

(57r)2-((xw)2
1

. (8)

J

This form of .lX(x) was chosen for its adequate accuracy and its

relatively simple Fourier transform expression when compared to

that of Kobayashi’~ expression for the transverse current [8], [9].

Also, calculating JJa) given in [8] requires excessive computer

time. Therefore, (7) is a good choice when computational ef-

ficiency is needed.

For the normalized longitudinal current component, the distr-

ibution used here is given by [8], [9]

(}+( X)=1+1O 1–=
M(x)–1

M(xC)–l
(9a)

w
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where

1
M(x) =

m

2
(9b)

1– ~
w

is the normalized Maxwell distribution for an isolated conducting

strip [13] and 2x,, /w varies with w\h [9, fig. 5]. The Fourier

transform of (9a) is [8]

lo(l–2xc/w)
~(a) =~sin

()
y+

a M(xc)–l

“[wwsinm ’10)
where Jo ( Ial w/2) is a Bessel function of zero order. This form of

&(x) has been shown to be in good agreement with the theoreti-

cal longitudinal current as calculated from the Green’s function

method [9]. For the shielded microstnp line where the definition

of (5) is used, the transform variable a in (8) and (10) is replaced

with ~,, for the discrete summations in (6a)–(6d).

The computations for the dispersed waveforms at a distance L

along a microstnp line are made from

v(t,z=q=;~:mti(o, z = O)eJ[o’-B(o)L] do (11)
CQ

where

(ha)

and F( Q, z = O) is the Fourier transform of the pulse at the

reference point of the line.

III. NUMERICAL lZESULTS AND DISCUSSION

The effective dielectric constant (of the fundamental mode)

from the spectral-domain method, from the quasi-static formula

of Pramanick and Bhartia [10], and from the curve-fitting repre-

sentation of Yamashita [11] are shown in Fig. 2(a) with c, =13

for a gallium arsenide substrate. The dimensions of the conduct-

ing walls (a and b) are only five times that of the strip width w

and substrate height h for this case. Notice in Fig. 2(a) that the

shielded microstrip line has significantly lower values for C.,,:(~)

at lower frequencies. This characteristic for the shielded mlcro-

strip is caused by the fact that some of the electric field lines

from the strip conductor are prematurely terminated at the walls

as compared to the open microstrip, where nearly all field lines

are terminated at the ground plane. The capacitance of the

shielded line is thus decreased as a result of the early termination

of the electric field lines. Also notice here that the zero-order

solution for the open microstrip is indistinguishable from the

first-order solution (the curve for the zero-order solution is hid-

den by the solid-line curve of the first-order solution). This shows

that the transverse current contribution is very small. At high

frequencies the C,e,,(~ ) values of both lines approach c,, indicat-

ing that the total energy is increasingly confined within the

substrate.
When the dimensions a and b are increased to ten times the

value of w and h, respectively, as illustrated in Fig. 2(b), the

low-frequency values of ~,,,,(~) for the shielded microstrip show

an increase and seem to approach those of the open microstrip

values. This enlargement of the walls of the confining rectangular

waveguide further isolates the center strip and causes fewer field

lines to terminate at the walls. Fig. 2(b) also shows that the
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Comparison of the effective dlelectnc constant of open and shieldpd
microstrlp lines with (a) w = h = 1.5 mm, a = b = 5w,, and (b) w = h = 15

mm, a= b=lOw.

first-order solution of the shielded microstrip (long-dash line) is

nearly indistinguishable from the zero-order solution (long-dash,

short-dash line) of the shielded line; this again points out the

relative insignificance of the transverse current.

As stated earlier, the shielded microstrip formulation converges

to a solution faster than the open line formulation. Using an IBM

3090 for the calculations of B as a function of frequency, it was

determined that the computation time for the open microstrip is

about three to four times that of the shielded line case, As it is

possible to obtain a close approximate ion of the open microstrip

dispersion curve using tie shielded microstnp formulas with

sufficiently large values of a and b (generally at least ten ti~~s

larger than the width of tie center conductor and height of the

substrate), it is advantageous to use me zero-order solution of the

latter case for both types of lines whenever the spectral-do~a.in

method is utilized.

Fig. 3(a) displays 40-ps-wide (at the half magnitude points)

Gaussian pulses after propagating a distance of L =50 mm alpng

the line. The dimensions of the microstnp parameters (w, h, a,

and b) are identicaf to those of Fig. 2(a). Note that the pulse

propagating along the shielded line is shifted to the left because it

travels with a faster phase velocity than the one from the open

microstnp. This is a result of the pulse’s phase velocity, which is

inversely proportional to the square root of c.<,,(~) (VP(~) =

c/~~, c = free-space velocity of light). Also note that the

pulse from the open microstrip’s zero-order solution (which is to
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Fig. 3. Comparison of dispersed Gaussian pulses along open and shielded

micrrrstrip lines at L = 50 mm with (a) w = h = 1.5 mm, a = b = 5w, and (b)

w=/r=l,5mm, a= b=10w.

be represented by the long-dash, short-dash line in Fig. 3(a)) is

almost identical to that of its first-order solution (solid line). This

obscures the visibility of the zero-order solution. The pulses

calculated from the models of Pramanick and Bhartia [10] and

Yamashita [11] are fairly close in value to that of the spectral-

domain formulation of the open rnicrostrip.

Fig. 3(b) shows the Gaussian pulses with a and b ten times

larger than w and h, respectively (same as Fig. 2(b)). Note that

pulses from both the open and the shielded microstrip lines

(first-order) are in close alignment. The pulse with the zero-order

solution of the shielded line cannot be distinguished from the

first-order solution. Since the low-frequency values of C,c,,(~ ) in

Fig. 2(b) are in closer agreement than the case of Fig. 2(a), a

corresponding effect in the phase velocities is observed. These

results indicate that the shielded line’s zero-order solution is able

to approximate either the zero- or the first-order solution of the

open line.

IV. CONCLUSIONS

The spectral-domain method with accurate expressions for the

longitudinal and transverse currents was used to calculate the

dispersion curve of open and shielded rnicrostnp lines. Disper-

sion distortions of electrical pulses are computed using c,<,,(~)

from the spectral-domain method and from approximate quasi-

static solutions. The values from Pramanick and Bhartia’s for-

mula and from Yamashita’s formula for the effective dielectric

constant were found to be in fairly close agreement of those from

the spectral-domain formulation. It was determined that the

zero-order solution of the shielded fine can be used to obtain

either the zero-order or the first-order solution of the open line if

sufficiently large values of the shielded line’s wall dimensions are

taken (at least ten times greater than the center conductor width

and substrate height). This gives the advantage of minimizing the

computation time for the open microstnp calculations.
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