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measurement accuracy performed. The high measurement accu-
racy obtained with these transitions allows coplanar probes to be
used to test microstrip circuits without via holes at the wafer
level. The need for mounting circuits in fixtures for testing is
eliminated, resulting in lower testing costs.

The transition may prove especially useful at millimeter wave-
lengths, where its size can be reduced. Work to characterize this
transition at millimeter wavelengths is in progress. Work to
determine the § parameters of the transition as a function of
substrate thickness is also in progress.
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Pulse Dispersion Distortion in Open and Shielded
Microstrips Using the Spectral-Domain Method

TONY LEUNG, STUDENT MEMBER, IEEE, AND
CONSTANTINE A. BALANIS, FELLOW, IEEE

Abstract — The spectral-domain method is used to compute the effective
dielectric constant [¢, (f)] of open and shielded microstrip lines to
analyze the dispersion distortion of short electrical pulses. Precise expres-
sions for the longitudinal and transverse current distributions atlow a high
level of accuracy for €, (f). It is determined that computation time can be
minimized for the open microstrip calculations by using the shielded
microstrip formulation provided large dimensions for the conducting walls
are taken.

I. INTRODUCTION

The analysis of the transient signal response in microstrip
transmission lines is important in microwave integrated circuits
(MIC’s) when large-bandwidth signals or high switching speeds
are considered. Electrical pulses generated from optoelectronic
switching typically have wide spectra that extend into the disper-
sive frequency region of microstrip lines. In the past, transient
signal behavior in microstrip lines was analyzed with quasi-static
formulas for the effective dielectric constant, €. (f) of the
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Configuration and parameters of (a) open microstrip and (b) shielded
microstrip lines.

Fig. 1.

fundamental mode [1]-[5]. However, detailed pulse dispersion
has not yet been examined with ¢, (/) obtained from rigorous
full-wave analyses such as the spectral-domain method [6], [7].
Neither have comparisons been made of distorted pulses using
full-wave methods and quasi-static techniques.

This paper considers the dispersion of short electrical pulses
propagating along open and shielded microstrip lines (Fig. 1)
with €, (f) calculated from the spectral-domain method. The
accuracy of this method can be increased systematically by
including more basis functions for the longitudinal and trans-
verse currents (J,(x) and J (x), respectively). However, as
pointed out by Kobayashi, only one basis function for each
current component is sufficient if these distributions are very
good approximations of the exact currents on the strip conductor
[8], [9]. Therefore the expressions for J,(x) and J, (x) considered
in this paper are accurate formulas which allow the currents to be
represented by only one basis function. This corresponds to the
“first-order” solution of [6] and [7], while neglecting the trans-
verse current corresponds to the “zero-order” solution. For com-
parison purposes, the zero- and first-order solutions are used to
compute the dispersion curve of oper and shielded microstrip
lines. Also, the current expressions considered here will be used
for both the open and the shielded lines so that their dispersive
characteristics may be compared. It is shown that computation
time may be minimized by using the shielded line formulation for
the open line calculations. Finally, pulses calculated with ¢, (f)
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from the spectral-domain method, from quasi-static approxima-
tions [10], and from curve-fitting methods [11] are compared.

II. FORMULATION

The main steps of the spectral-domain formulation for both
types of microstrips will be reviewed briefly here. The differences
in the two formulations will contrast their corresponding compu-
tational efficiency in calculating €, (f).

For the open microstrip case shown in Fig. 1(a), the scalar
potentials and the field components derived from them are
Fourier transformed with respect to x as

o +oo

il p) =[x, p)edx (1)

— 0

with i =1,2 denoting the regions above and below the air-sub-
strate interface, respectively, and the tilde (~) representing the
transformed field quantity. The hybrid-mode fields (TE? and
TM?) are then modified according to the boundary conditions of
the open structure so that the transformed scalar potentials are
functions of the longitudinal and transverse currents on the strip
conductor.

The solution for B [and ¢, (f)] involves the utilization of
Galerkin’s method (essentially a special case of the moment
method where the weighting functions are identical to the basis
functions) applied in the spectral domain. The basis functions in
this case are used to represent the current distributions according
to [6]

™Mz

J(a) = % cpfom(e) (22)

m=1

Ay ( @)

1

J.(a)

]
e

(2b)

where M and N are the number of functions taken to expand
J.(a) and J, (@), respectively. Applying Galerkin’s method with
the welghtlng functions J,,(«) and J,(«) for different values of
i, the result is [6]

N
Z K9P, + Y, K&, =0, i

=1,2,---,N (3a)
m=1

Z K(“’c + Z K(“)d =0, i=1,2,---,M (3b)
K&V = [ TL (@) Gu(eB) Fp(e) da (40)

+00 . ~
KoP = [ L(@)Gu(aB) Lu(e)da (4b)
KGD = f J(@) (e, B) Su(@)da (40)
RGP = [T ()G B) (@) do (4d)

and G, (a, B) (the elements of the dyadic Green’s function in the
spectral domain) are given in [6].

The formulation of the shielded microstrip line [7] of Fig. 1(b)
is essentially identical to the open microstrip case except that a

Jo(a) = j2w

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 36, NO. 7, JULY 1988

finite Fourier transform must be used. That is, instead of (1), we
have

J.(n, ) = f (5)

where l%n =(n—1/2)2n/a is taken for the fundamental mode.
Using this definition and the same procedure as above with
different boundary conditions that reflect the rectangular wave-
guide geometry, a set of equations identical to (3a) and (3b) are
obtained with matrix elements redefined as [7)

P45, y) € d

KO = 3 1.(n) G, B) () (6a)
1

KG?= T LGa(m B Iu(n) ()

K@D = ¥ (n)Go(n. B) () (69

n=1

K(Z 2) = Z

n=1

(1) Gy (n.B) L, (n) (6d)

where G, (n,B) are given in [7]. The discrete summations in
(62)—-(6d) converge to a solution for 8 more rapidly than the
integral formulas of (4a)-(4d), as discussed in the next section.
The expression for J.(x) is critical for the accuracy of €, (/).
The transverse current component, in contrast, merely acts as an
adjuster for the magnitude of ¢, (f) as determined by J,(x) [8],
[12]. For this investigation, the normalized distribution used for
J.(x) is given by Denlinger [13] (correction given in [9]) as

. [ X ] 0 0.8w
sin . <X < ——
L(x) = 08w <= )
* [ X ] 0.8w w
_— < —
reos| oo 7 <H<3

where (+) ensures continuity at the (+0.8w/2) points. The
Fourier transform (from the definition of (1)) of (7) is given by

awcos(0.4aw)
ol -

57 sin(0.5aw) — awcos(0.4aw)

(5m)° —(aw)’

(®

This form of J (x) was chosen for its adequate accuracy and its
relatively simple Fourier transform expression when compared to
that of Kobayashi’s expression for the transverse current 8], [9].
Also, calculating J_(«) given in [8] requires excessive computer
time. Therefore, (7) is a good choice when computational ef-
ficiency is needed.

For the normalized longitudinal current component, the distri-
bution used here is given by [8], [9]

1(%) =1+10{ (9a)
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where

M(x) = (9b)

1
2x\?
(V)
w
is the normalized Maxwell distribution for an isolated conducting
strip [13] and 2x,/w varies with w/h [9, fig. 5]. The Fourier
transform of (9a) is [8]
- 2 jawy 10(1-2x,./w)
== — )t
() asm( ) M(x,)—-1

{%Jo{l—%&} —gsin(ﬁ;)} (10)

where Jy([a|w/2) is a Bessel function of zero order. This form of
J,(x) has been shown to be in good agreement with the theoreti-
cal longitudinal current as calculated from the Green’s function
method [9]. For the shiclded microstrip line where the definition
of (5) is used, the transform variable « in (8) and (10) is replaced
with %, for the discrete summations in (6a)-(6d).

The computations for the dispersed waveforms at a distance L
along a microstrip line are made from

2

Loy Jlot-B@)L
V(t,z=L)=2—W— V(w,z=0)e de (11)
-0

where

B(0) == er (@)

and V(w,z=0) is the Fourier transform of the pulse at the
reference point of the line.

(11a)

II1.

The effective diclectric constant (of the fundamental mode)
from the spectral-domain method, from the quasi-static formula
of Pramanick and Bhartia [10], and from the curve-fitting repre-
sentation of Yamashita [11] are shown in Fig. 2(a) with ¢, =13
for a gallium arsenide substrate. The dimensions of the conduct-
ing walls (@ and b) are only five times that of the strip width w
and substrate height 4 for this case. Notice in Fig. 2(a) that the
shielded microstrip line has significantly lower values for €, (f)
at lower frequencies. This characteristic for the shielded micro-
strip is caused by the fact that some of the electric field lines
from the strip conductor are prematurely terminated at the walls
as compared to the open microstrip, where nearly all field lines
are terminated at the ground plane. The capacitance of the
shielded line is thus decreased as a result of the early termination
of the electric field lines. Also notice here that the zero-order
solution for the open microstrip is indistinguishable from the
first-order solution (the curve for the zero-order solution is hid-
den by the solid-line curve of the first-order solution). This shows
that the transverse current contribution is very small. At high
frequencies the €, (f) values of both lines approach ¢,, indicat-
ing that the total energy is increasingly confined within the
substrate.

When the dimensions a and b are increased to ten times the
value of w and #h, respectively, as illustrated in Fig. 2(b), the
low-frequency values of ¢, (f) for the shielded microstrip show
an increase and seem to approach those of the open microstrip
values. This enlargement of the walls of the confining rectangular
waveguide further isolates the center strip and causes fewer field
lines to terminate at the walls. Fig, 2(b) also shows that the
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Fig 2. Comparison of the effective dielectric constant of open and shielded

microstrip lines with (8) w=h=15 mm, a=5b=5w, and (b) w=h=135
mm, a=bh=10w.

first-order solution of the shielded microstrip (long-dash line) is
nearly indistinguishable from the zero-order solution (long-dash,
short-dash line) of the shiclded line; this again points out the
relative insignificance of the transverse current.

As stated earlier, the shielded microstrip formulation converges
to a solution faster than the open line formulation. Using an IBM
3090 for the calculations of B as a function of frequency, it was
determined that the computation time for the open microstrip is
about three to four times that of the shielded line case. As it is
possible to obtain a close approximation of the open microstrip
dispersion curve using the shielded microstrip formulas with
sufficiently large values of a and b (generally at least ten times
larger than the width of the center conductor and height of the
substrate), it is advantageous to use the zero-order solution of the
latter case for both types of lines whenever the spectral-domain
method is utilized.

Fig. 3(a) displays 40-ps-wide (at the half magnitude points)
Gaussian pulses after propagating a distance of L = 50 mm along
the line. The dimensions of the microstrip parameters (w, &, a,
and b) are identical to those of Fig. 2(a). Note that the pulse
propagating along the shielded line is shifted to the left because it
travels with a faster phase velocity than the one from the open
microstrip. This is a result of the pulse’s phase velocity, which is
inversely proportional to the square root of €, (f) (v,(f)=

¢/\Je, (f), c¢=free-space velocity of light). Also note that the
pulse from the open microstrip’s zero-order solution (which is to
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Fig. 3. Comparison of dispersed Gaussian pulses along open and shielded
microstrip lines at L = 50 mm with (a) w=h =1.5 mm, a = b= 5w, and (b)
w=h=15mm, a=5b=10w.

be represented by the long-dash, short-dash line in Fig. 3(a)) is
almost identical to that of its first-order solution (solid line). This
obscures the visibility of the zero-order solution. The pulses
calculated from the models of Pramanick and Bhartia [10] and
Yamashita [11] are fairly close in value to that of the spectral-
domain formulation of the open microstrip.

Fig. 3(b) shows the Gaussian pulses with ¢ and b ten times
larger than w and h, respectively (same as Fig. 2(b)). Note that
pulses from both the open and the shielded microstrip lines
(first-order) are in close alignment. The pulse with the zero-order
solution of the shielded line cannot be distinguished from the
first-order solution. Since the low-frequency values of €, (f) in
Fig. 2(b) are in closer agreement than the case of Fig. 2(a), a
corresponding effect in the phase velocities is observed. These
results indicate that the shielded line’s zero-order solution is able
to approximate either the zero- or the first-order solution of the
open line.

IV. CONCLUSIONS

The spectral-domain method with accurate expressions for the
longitudinal and transverse currents was used to calculate the
dispersion curve of open and shielded microstrip lines. Disper-
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sion distortions of electrical pulses are computed uvsing €, (f)
from the spectral-domain method and from approximate quasi-
static solutions. The values from Pramanick and Bhartia’s for-
mula and from Yamashita’s formula for the effective dielectric
constant were found to be in fairly close agreement of those from
the spectral-domain formulation. It was determined that the
zero-order solution of the shielded line can be used to obtain
either the zero-order or the first-order solution of the open line if
sufficiently large values of the shielded line’s wall dimensions are
taken (at least ten times greater than the center conductor width
and substrate height). This gives the advantage of minimizing the
computation time for the open microstrip calculations.
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